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Abstract - For an ordered set W = {w1, w2 … wk}  V (G) of 

vertices, we refer to the ordered k-tuple r(v  W) = (d(v, w1), 

d(v, w2) … d(v, wk)) as the (metric) representation of v with 

respect to W. A set W of a connected graph G is called a 

resolving set of G if distinct vertices of G have distinct 

representations with respect to W. A resolving set with 

minimum cardinality is called a minimum resolving set or a 

basis. The dimension, dim(G), is the number of vertices in a 

basis for G. By imposing additional constraints on the 

resolving set, many resolving parameters are formed. In this 

paper, we introduce cyclic resolving set and find the cyclic 

resolving number for a grid graph and augmented grid graph. 
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I. INTRODUCTION 
 

If G is a connected graph, then the distance d(u; v) between 

two vertices u; vV(G) is the shortest u - v path. For an ordered 

setW = {w1, w2 … wk}V(G) and a vertex v of G, the k-vector 

r(vW) = (d(v,w1), d(v,w2)… d(v,wk)) is referred as the 
representation of v with respect to W. If distinct vertices of G 
have distinct representations with respect to W, then W is 
called a resolving set for G. A resolving set containing a 
minimum number of vertices is called a minimum resolving set 
or a basis for G. The dimension, dim(G), is the number of 
vertices in a basis for G [17].  
 

The i-th component of r(v W) is 0 if and only if v = wi, for an 
ordered set W = {w1, w2 … wk} of vertices. Hence it is enough 

to verify that r(x W) r(y W) for each pair of distinct vertices 

x,yV(G) \ W, to show that W is a resolving set. Slater [19, 20] 
introduced this concept using locating set for a resolving set 
and referred to the cardinality of a minimum resolving set in a 
graph G as its location number. Independently, Harary and 
Melter [7] discovered these concepts but used the term metric 
dimension for a location number. These concepts have also 
been investigated by Johnson [8] of the Pharmaceutical 
Company while attempting to develop a capability of large 
data sets of chemical graphs and he also noted that the problem 
of finding the metric dimension is NP-hard. Independently, 
Chartrand et al. [4] have also discovered the concept of a 
resolving set and a minimum resolving set.  
 
Resolving sets have applications in chemistry for representing 
chemical compounds [8],problems of network discovery and 
verification [3, 21],pattern recognition and image processing 
which involve the use of hierarchical data structures [11], robot 
navigation [9] and in areas like coin weighing problems 
[6].The problem of computing the metric dimension of a graph 
is NP-complete [5].This problem remains NP-complete for 

bipartite graphs proved by Manuel et al. [14]. The metric 
dimension problem has also been studied for trees, multi-
dimensional grids [9], torus networks [13], Benes networks 
[14], honeycomb networks [15], and Illiac networks [16]. For 
graphs modeled by an interconnection networks, a resolving 
set represents a set of detecting devices in a network so that for 
every station in the network, there are two detecting devices 
whose distances from the station are distinct. This is possible 
as there is a distance between each vertex in a minimum 
resolving set. To have an easy access between the devices, the 
distance between devices should be small [18]. This lead the 
introduction of connected resolving sets and was introduced by 
Saenopholphat et al. [17].Many resolving parameters like 
connected resolving parameter, path resolving and one-factor 
resolving set [1], star resolving set [2] have been analyzed. 
This paper reports the resolving parameter of a graph G when 
the resolving set induces a cycle. 

 
II. CYCLIC RESOLVING NUMBER 

 
A resolving set W of a graph G is said to be connected if the 
subgraph G[W] induced by W is a nontrivial connected 
subgraph of G. The connected resolving numbercr(G) is the 
minimum cardinality of a connected resolving set W in G. A 
connected resolving set of cardinality cr(G) is calledcr-set of 
G. Clearly, every connected resolving set is a resolving set. It 

was noted in [17] that if G is a connected graph of order n 3, 
then 1 ≤ dim(G) ≤ cr(G) ≤ n – 1. Further, dim(G) = cr(G) if and 
only if G contains a connected basis. For a connected graph G 

of order n 2, cr(G) = 1 if and only if G = Pn,cr(G) = n – 1 if 
and only if G = Kn or G = K1, n – 1. Moreover, for each pair k, n 
with 1 ≤ k ≤ n – 1, there is a connected graph of order n with 
connected resolving number k[17]. 
 
If the subgraphG[W] induced by a resolving set W of G is a 
cycle, then G[W] is a cyclic resolving set. The minimum 
cardinality of a cyclic resolving set in a graph G is called the 
cyclic resolving number of G, denoted by cyr(G). In other 
words, for minimum positive integers m, n such that G[W] 
 mCn, then mis acyclic resolving number. 

 
III. GRID NETWORKS 

 
An interconnection network is modeled as an undirected graph 
G = (V, E) with vertex setV and edge set E where there are no 
multiple edges or self-loops. The vertices of a graph represent 
the nodes (processing elements, memory models or switches) 
of the network and the edges correspond to communication 
lines. Three basic attributes such as degree, diameter and node 
disjoint paths are necessary for developing an interconnection 
network. In addition to this, optimal algorithms for various 
nodes of packet communication, embeddability, symmetry 
properties and recursive scalability are the complex attributes 
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to be considered. A few examples of interconnection networks 
are tree, grid (especially the 2-dimensional grid Mn×n), 
hypercube, k-aryn-cube, OTIS-Network and WK recursive 
grid. The advantage of grid network is that it adapts 
dynamically to the changes in the structure of the network [10].  

A two-dimensional grid graph [12], denoted by 

G(m,n), is the graph Cartesian product PmPn of path graphs on 

m and n vertices. Thevertex set and edge set of an mn Grid 
Graph G(m, n) are:   (   )              
and   (   ) (     )  |    |  |    |    .Hence the number 
of vertices and edges of a grid graph G(m, n) are mn and 2mn – 
m – n.The grid graphs are bipartite graphs and Hamiltonian if 
either the number of rows or columns is even. In this paper, we 

denote the vertices of an mn Grid Graph G(m, n) as (i, j) 
where i denotes the row and j denotes the column. 
 

IV. CYCLIC RESOLVING NUMBER OF GRID 
NETWORKS 

 

Lemma4.1: Let G denote the mn grid graph. Then cyr(G)>1, 
where m≥3; n≥ 4. 
 
Proof: 
Consider the vertices (i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), 0 ≤ 
i ≤ m – 1, 0 ≤ j ≤ n – 1 which induces a 4-cycle. i. e., C = {(i, 
j), (i + 1, j), (i + 1, j + 1), (i, j + 1)}, 0 ≤ i ≤ m – 1, 0 ≤ j ≤ n – 1.  
To prove that C does not resolve G. 
For 0 ≤ i<m – 1, 0 ≤ j<n – 1, r((i, j + 2) | C) = r((i + 2, j + 1) | 
C) or in other words, the vertices (i, j + 2) and (i + 2, j + 1) 
have the representation with respect to C. If i = m – 1, 0 ≤ j<n – 
1, r((m – 1, j + 2) | C) = r((m – 3, j + 1) | C), for 0 ≤ i<m – 1, j 
= n – 1, r((i, n – 3) | C) = r((i + 2, n – 2) | C) and for i = m – 1, j 
= n – 1, r((m – 1, n – 3) | C) = r((m – 3, n – 2) | C). Hence 
cyr(G)>1. 
 

Theorem4.1: For an mn grid graph G. Then cyr(G)=2,m 
≥3andn ≥ 4. 
 

Proof: By Lemma4. 1,cyr(G) > 1. Let S=   
   

  where   
 = 

{(0, 0), (0, 1), (1, 1), (1, 0)} and   
  = {(0, n – 2), (0, n – 1), (1, 

n – 1), (1, n – 2)}.  
 
We claim that S is a cyclic resolving set. 
 
For any two vertices in the same row or column, d((0, 0), (i, j)) 

d((0, 0), (i, j + 1)), 0 ≤ i<m, 0 ≤ j<n or d((0, 0), (i, j)) d((0, 
0), (i + 1, j)), 0 ≤ i<m, 0 ≤ j<n. 
 
Consider any two vertices in different rows or columns. Then 

d(x, (i + 2, j + 2)) = d(x, (i + 1, j + 1)) for x  
 , 0 ≤ i<m – 1, 0 

≤ j<n – 1. Similarly, d(x, (m – 1, j + 2)) = d(x, (m – 3, j + 1)) 
for i = m – 1, 0 ≤ j<n – 1, d(x, (i, n – 3)) = d(x, (i + 2, n – 2)) 
and i = m – 1, j = n – 1, d(x, (m – 1, n – 3)) = d(x, ((m – 3, n – 
2)). Pair of vertices with same representation with respect to   

  
is resolved by (0, n – 1). Hence S resolves all pairs of vertices 
in G. 

By the structure of an mn grid graph G, there exists cycles of 
length 2l + 2, 1 ≤ l ≤ m + n – 2. This implies that C4 is a cycle 
of minimum length. Since the set S which induces 2C4 is cyclic 
resolving set, cyr(G)=2. 
 

Figure 1 is a 5 7 Grid GraphG and the cyclic resolving sets of 
G are{(0, 0), (0, 1), (1, 1), (1, 0)}, {(0, 5), (0, 6), (1, 6), (1, 5)}. 
 

 
 

Figure 1: 5 7 Grid Graph with its Cyclic Resolving Set 

 

Corollary4.1:For an mn grid graph G, cyr(G)=1 if m = 2 and 

n3 or m 3 and n = 2. 
 

Corollary 4. 2: For m 3 and n = 3, then cyr(G) = 2, where G is 

an mn grid graph. 
 

V. AUGMENTED GRIDGRAPHAM(M,N) 
 

An augmented grid AM(m,n)is a grid G(m,n)with additional 
edges are obtained by joining the vertices (i + 1,j) and (i, j+1),0 
≤i≤ m – 1, 0 ≤j ≤ n – 1. 
 
Lemma5. 1: Let G be AM(m,n)where m ≥ 3, n ≥ 4. Then cyr(G) 
>1.  
 
Proof: 
To show that a cycle of length 3 does not resolve G. 
Let C = {(i, j), (i, j + 1), (i + 1, j)}, 0 ≤ i ≤ m – 1, 0 ≤ j ≤ n – 1. 
Clearly C induces a cycle of length 3. 
 
For 0 ≤ i<m – 1, 0 ≤ j <n – 1, r((i + 2, j + 1) | C) = r((i + 1, j + 
2) | C). Similarly, if i = m – 1, 0 ≤ j <n – 1, r((m – 2, j + 2) | C) 
= r((m – 3, j + 2) | C), if 0 ≤ i<m – 1, j = n – 1, r((i + 2, n – 3) | 
C) = r((i + 1, n – 2) | C) and if i = m – 1, j = n – 1 r((m – 2, n – 
3) | C) = r((m – 3, n – 2) | C). Thus cyr(G)> 1. 
 

Theorem 5. 1:cyr(AM(m,n)) = 2, m 4. 
 
Proof: 
In view of Lemma 5. 1, cyr(AM(m,n)) > 1. Assume thatS = 

  
   

  where   
 = {(0, 0), (0, 1), (1, 0)} and   

  = {(0,m – 1) 
(0, m – 2) (1, m – 1)}.Here   

 and   
  are cycles of length 3. 

Any two distinct vertices in the same row or column have 
distinct representation with respect to   

 . But d(x, (i, j)) = d(x, 

(l, i – (l – 1)) for x  
 , 2 ≤ i<m, j = 1, 1 ≤ l<iand d(x, (i, j)) = 

d(x, (l, m – l +i)) for 2 ≤ i<m – 1, j = m – 1, i + 1 ≤ l ≤ m.  
 
Now pairs of vertices having the same representation are 
resolved by any vertex of   

 . Since C3 is a cycle of minimum 
length and S induces 2C3, cyr(AM(m, n)) = 2. 
 
An augmented grid graph AM(6, 6) with its cyclic resolving set 
is depicted in Figure 2. 
 

(0, 0)
(0, 1)

(1, 0)
(1, 1) (1, 5)

(0, 6)

(1, 6)

(0, 5)
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Figure 2: Cyclic Resolving Set in AM(6, 6) 

 

Theorem 5. 2:cyr(AM(m, n))=2, m 3, n 4. 
 
Proof of Theorem 5. 2 is similar to that of Theorem 5 1. 
 
Corollary 5. 1:Form = 2, n ≥ 2 and n = 2, m ≥ 2, cyr(AM(m,n)) 
= 1.  
 
Corollary 5. 2: cyr(AM(m,n)) = 2, whenever n = 3, m ≥ 3. 

 
VI. CONCLUSION 

 
The cyclic resolving number has been introduced in this paper 
and the cyclic resolving number of Grid graph and 
Augmentedgrid graph has been determined. The cyclic 
resolving number for other interconnection networks such as 
Torus, Butterfly, Hypercube derived networks are under 
investigation. 
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